Echo

Echo 关注TA

大家好,我是Echo!

Echo

Echo

关注TA

大家好,我是Echo!

  •  普罗旺斯
  • 自由职业
  • 写了309,600,023字

该文章投稿至Nemo社区   资讯  板块 复制链接


美国可控核聚变 4 次点火成功,刷新纪录登 Nature!首席女科学家入选年度十大人物

发布于 2023/12/16 20:01 172浏览 0回复 4,347

一年前,人类首次实现核聚变反应的净能量增益。这一年里,NIF 不断改进,又成功实现三次点火,连破多个纪录!就在近日,项目的首席科学家,更是入选了 Nature 年度十大人物。

美国可控核聚变实验,四次实现净能量增益!

去年 12 月 14 日,劳伦斯利弗莫尔国家实验室(LLNL)首次实现可控核聚变点火成功,为全人类摘下清洁能源「圣杯」——

在向目标提供 2.05 兆焦耳(MJ)的能量之后,产生了 3.15 兆焦耳的核聚变能量输出,能量增益约为 1.5。

2023 年 7 月 30 日,实验室首次实现 3.88 兆焦耳的输出能量,创下历史最高。

10 月 30 日,实验室再刷记录 —— 输入能量首次达到 2.2 兆焦。同时,3.4 兆焦耳的输出能量也位列第二。

面对一次又一次的成功「点火」,Nature 也激动地发文表示 —— 激光核聚变即将进入一个全新的时代。

可以想象,当可控核聚变最终实现时,人类将有可能史上首次获取海量无碳清洁能源,彻底改变未来的能源路线图。

也就是说,到了那时,就不再有煤和石油燃烧产生的温室气体,不再有危险、长效的放射性废物 —— 人类将得到真正意义上的「清洁能源」。

这意味着进入电气时代后,一直困扰着人类的能源紧缺问题将从此消失。人类甚至能在可控核聚变带来的恒星级能源中,实现前所未有的科技突破。

四次成功点火,连续刷新记录

不过,让我们先回到现实。

让激光器提供如此巨大能量的真正难点在于,如何保护 NIF 珍贵的光学元件不会受到碎片的损伤。

NIF 是世界上唯一一个能在损伤阈值以上运行的激光系统,而这在一定程度上就得益于实验室研发的光学回收循环系统。

强化光学元件

2023 年 6 月,NIF 完成了两项关键的改进措施,这对实现 2.2 兆焦耳的输入能量来说至关重要。

包括在 NIF 三分之二的光束线上使用熔融二氧化硅碎片屏蔽,以及在 32 条下半球光束线上安装金属屏蔽。

这些改进将由碎片引起的损伤率降低了 10 到 100 倍,具体取决于光束线。由于重力原因,较低光束线的光学元件接收到了来自靶室最多的碎片。

除此之外,其他的改进还包括,新的抗反射涂层、蒸汽六甲基二硅氨烷(HMDS)处理和光学回收循环容量的增加。以及新的「灰边阻断器」,用于解决一个科学家们尚未完全确定的问题。

不只是能量的增加

要维持 NIF 在科学领域取得的惊人突破,单靠增加能量是远远不够的 ——

激光脉冲的持续时间仅为几十亿分之一秒,因此需要极高的精确度才能达到理想效果。

为了达到这个目标,团队最近完成了高保真脉冲整形(HiFiPS)系统的部署工作。

作为一个历时多年的项目,HiFiPS 能够更精确、更准确的脉冲整形,进而在内爆中实现更好的功率平衡和对称性控制。

此外,团队还翻新了设施中的光纤,使其更能承受反复的中子暴露。这些光纤用于精确测量传递给目标的激光脉冲。

翻新后,信号强度直接提高了 10 到 100 倍,而研究人员也能够继续准确地「观测」激光性能。

然而,从目前的技术水平到实现向电网提供聚变能源,仍然有很长的路要走。

尽管 NIF 拥有目前世界上最大的激光器,但该系统效率极低,在每次点火中,有超过 99% 的能量在到达目标前就已损失殆尽

而开发更高效的激光系统,便是 DOE 新启动的惯性聚变研究计划的一个重要目标。

最近,该部门宣布将在四年内投入 4200 万美元,建立三个新的研究中心,来共同努力实现这一目标及其他科学进步。

其中,每个中心都将包括国家实验室、大学研究人员和行业合作伙伴。

首席科学家,入选 Nature 十大科学人物

而整个核聚变计划的核心人物之一,物理学家 Annie Kritcher,也成功入选了 Nature 年度十大科学人物。

2022 年,Annie Kritcher 在国家点火装置(NIF)上实现了一个几十年来全世界实验室都难以实现的目标 —— 将原子压缩到极致,使得它们的核发生融合,并产生出比反应本身消耗的还要多的能量。

但是,在达到这一实验里程碑(即点火)之后,团队面临着重复这一成就的压力

高风险的研究很少能一帆风顺:团队在 6 月份进行了首次复现,但结果却差强人意。

好在,第三次尝试取得了成功。7 月 30 日,NIF 的 192 束激光向悬浮在金圆筒中冷冻的氢同位素氘和氚小球发射了 2.05 兆焦耳的能量。

由此引发的内爆使同位素在融合成氦的过程中释放出能量,并产生了 6 倍于太阳核心的温度。最终,这些创造出了破纪录的 3.88 兆焦耳聚变能

放眼世界,在 NIF 取得这一成就之前,还没有哪个实验室可以实现输出能量大于消耗能量的聚变反应。

随后,Kritcher 和她的团队又在 10 月份成功地进行了两次点火,从而让总点火次数达到了四次。

2004 年,Kritcher 在利弗莫尔进行暑期实习时,就开始研究聚变能源。很快她就将目光投向了 NIF—— 世界上为数不多可以研究聚变反应的地方。

2012 年,Kritcher 正式加入 NIF。

从那时起,她就带领团队分析实验数据,并使用计算机模型设计实验 —— 通过调整目标的大小和配置以及各种激光束的能量和时间等参数,实现并提高核聚变产量。一旦她的团队完成设计,实验团队就会接手发射激光并收集数据。

过程中,Kritcher 表现出了非常卓越的能力,而这也让她在 2016 年成为了 NIF 的首席设计师之一。

在接下来的几年里,Kritcher 和她的团队一直在对 NIF 的主要实验项目进行数字运算和设计调整。在对目标进行各种改动的同时,团队还利用各种改进措施提高了激光的总体能量。结果就是,核聚变的实现,越来越频繁了。

随着「点火」的成功,Kritcher 又开始了一系列新的实验 —— 通过向更厚的靶囊提供更多的激光能量来再次提高产量。

而这也代表着,NIF 向实现数十兆焦耳甚至更高产能的目标,又迈进了一步。

可控核聚变,清洁能源的「圣杯」

简单地说,「核聚变」就是两个轻原子核结合成一个较重的原子核,并释放出巨大能量的过程。

两个氢原子碰撞并聚合成氦原子,氦的质量比原来的氢原子略小。根据爱因斯坦标志性的 E=mc² 质能方程,这个质量差会转化为能量爆发出来。

在太阳的核心,每秒都在发生 6.2 亿吨氢的核聚变。产生的能量,是地球上一切生命的源泉。

但利用核聚变的一大难题之一,就是如何让核聚变反应释放的能量大于输入的能量,并且让过程可持续。

NIF 点火原理

20 世纪 60 年代,LLNL 的一组先锋科学家就作出假设:激光可以用来在实验室环境中诱导核聚变。

随后,在物理学家 John Nuckolls 的领导下,这一革命性的想法演变为惯性约束核聚变。

为了实现这一概念,LLNL 建立了一系列越来越强大的激光系统,最终建立了世界上最大、能量最强的 NIF。

实验中,激光器模仿了太阳中心的条件,将重氢同位素,氘和氚,融合成氦。

首先,若干氢气小球被放入胡椒粒大小的装置中,然后使用强大的 192 束激光,加热和压缩氢燃料。

激光在进入环空器后,会击中内壁并使其发出 X 射线,然后这些 X 射线可以将其加热到 1 亿摄氏度 —— 比太阳中心还热,并将其压缩到地球大气压的 1000 亿倍以上。

高能激光会使小球表面等离子体化,其余中心材料受到牛顿第三定律驱使,最终会向中央坍缩发生内爆。

在内爆时,只要对燃料球给予正确的高温高压就能发生链式反应 —— 也就是「点火」,随之便会放出大量能量。

工程奇迹

而让以上这些能够成为现实的国家点火装置(NIF),在工程和技术方面也是一个了不起的成就。

材料科学家和激光物理学家与工程师合作设计了一个包含 7,500 个大型光学元件、26,000 个小型光学元件和 66,000 多个控制点的设施。

这些光学元件和其他组件包含在大约 6200 个被称为「产线可换单元」(LRUs)的复杂模块化装置中。在必要时可以快速更换,以确保设施的连续运行。

NIF 激光脉冲从主振荡器室的初始脉冲形成到达目标,全程一公里,耗时 4.5 微秒。到达目标室中心的时间相差 30 皮秒,精度为 50 微米。

要达到这样的指向稳定性和目标的绝对精确度,在工程设计上是一个极大的挑战,需要光学支持系统具有坚如磐石的稳定性、部件的精确定位和对准以及严格精确的计算机计时系统。

为了应对这些挑战,所有支撑 NIF 反射镜和透镜的结构在设计时都考虑到了极高的稳定性。

工程团队针对包括水泵、电机和变压器在内的所有振动源,细致地计算了可能会对激光组件(通常是激光反射镜)产生的影响。

通过细致的建模,振动(>1Hz)和漂移(<1Hz)的设计都得到了满足。测试结果表明,原型光束线的性能可以达到或优于 50 微米的要求。

此外,为确保光束线组件不影响激光净空,团队还采用了精密测量技术,从而建立严格的测量网络,并控制好所有光束线组件的物理位置。所有光束外壳、支持系统和靶室的位置都精确到四分之一毫米。

这些信息随后被提供给设计团队,他们设计的结构既要有足够的刚度,又要有足够的阻尼,使结构对地面振动和建筑设备预期振动的响应符合整体稳定性要求。

确保所有 192 束激光在规定的 30 皮秒内到达,是通过使用 GPS 卫星系统不断更新内部时钟的精确定时系统实现的。集成的软件和硬件不断监测和更新定时,以保持精确度。

每个机械接口的设计公差优于 300 飞秒(万亿分之三秒),因此可以随时更换 LRU,以保持定时精度。此外,严格控制的程序可保持每个 LRU 的系统定时。

虽然,我们现在还不能借助这个装置,将核聚变要真正应用于发电。

但是在 60 年的尺度上,人类已经取得了重大的突破。

对于未来,我们或许也可以抱有更多的想象力。

参考资料:

  • https://www.nature.com/articles/d41586-023-04045-8

  • https://www.nature.com/articles/d41586-023-03923-5

  • https://lasers.llnl.gov/news/llnls-nif-delivers-record-laser-energy

  • https://lasers.llnl.gov/news/nif-an-engineering-marvel

广告声明:文内含有的对外跳转链接(包括不限于超链接、二维码、口令等形式),用于传递更多信息,节省甄选时间,结果仅供参考,IT之家所有文章均包含本声明。


本文由LinkNemo爬虫[Echo]采集自[https://www.ithome.com/0/739/722.htm]

本文标签
 {{tag}}
点了个评