随遇而安

随遇而安 关注TA

额,假装这里有签名...

随遇而安

随遇而安

关注TA

额,假装这里有签名...

  •  某地区
  • 工程师
  • 写了837,964字

该文章投稿至Nemo社区   编程综合  板块 复制链接


多层神经网络完整程序实现

发布于 2016/07/04 15:36 611浏览 0回复 3,705

import java.util.Random;
public class BpDeep{
public double[][] layer;//神经网络各层节点
public double[][] layerErr;//神经网络各节点误差
public double[][][] layer_weight;//各层节点权重
public double[][][] layer_weight_delta;//各层节点权重动量
public double mobp;//动量系数
public double rate;//学习系数

public BpDeep(int[] layernum, double rate, double mobp){
this.mobp = mobp;
this.rate = rate;
layer = new double[layernum.length][];
layerErr = new double[layernum.length][];
layer_weight = new double[layernum.length][][];
layer_weight_delta = new double[layernum.length][][];
Random random = new Random();
for(int l=0;l layer[l]=new double[layernum[l]];
layerErr[l]=new double[layernum[l]];
if(l+1 layer_weight[l]=new double[layernum[l]+1][layernum[l+1]];
layer_weight_delta[l]=new double[layernum[l]+1][layernum[l+1]];
for(int j=0;j for(int i=0;i layer_weight[l][j][i]=random.nextDouble();//随机初始化权重
}
}
}
//逐层向前计算输出
public double[] computeOut(double[] in){
for(int l=1;l for(int j=0;j double z=layer_weight[l-1][layer[l-1].length][j];
for(int i=0;i layer[l-1][i]=l==1?in[i]:layer[l-1][i];
z+=layer_weight[l-1][i][j]*layer[l-1][i];
}
layer[l][j]=1/(1+Math.exp(-z));
}
}
return layer[layer.length-1];
}
//逐层反向计算误差并修改权重
public void updateWeight(double[] tar){
int l=layer.length-1;
for(int j=0;j layerErr[l][j]=layer[l][j]*(1-layer[l][j])*(tar[j]-layer[l][j]);

while(l-->0){
for(int j=0;j double z = 0.0;
for(int i=0;i z=z+l>0?layerErr[l+1][i]*layer_weight[l][j][i]:0;
layer_weight_delta[l][j][i]= mobp*layer_weight_delta[l][j][i]+rate*layerErr[l+1][i]*layer[l][j];//隐含层动量调整
layer_weight[l][j][i]+=layer_weight_delta[l][j][i];//隐含层权重调整
if(j==layerErr[l].length-1){
layer_weight_delta[l][j+1][i]= mobp*layer_weight_delta[l][j+1][i]+rate*layerErr[l+1][i];//截距动量调整
layer_weight[l][j+1][i]+=layer_weight_delta[l][j+1][i];//截距权重调整
}
}
layerErr[l][j]=z*layer[l][j]*(1-layer[l][j]);//记录误差
}
}
}

public void train(double[] in, double[] tar){
double[] out = computeOut(in);
updateWeight(tar);
}

}



import java.util.Arrays;
public class BpDeepTest{
    public static void main(String[] args){
        //初始化神经网络的基本配置
        //第一个参数是一个整型数组,表示神经网络的层数和每层节点数,比如{3,10,10,10,10,2}表示输入层是3个节点,输出层是2个节点,中间有4层隐含层,每层10个节点
        //第二个参数是学习步长,第三个参数是动量系数
        BpDeep bp = new BpDeep(new int[]{2,10,2}, 0.15, 0.8);

        //设置样本数据,对应上面的4个二维坐标数据
        double[][] data = new double[][]{{1,2},{2,2},{1,1},{2,1}};
        //设置目标数据,对应4个坐标数据的分类
        double[][] target = new double[][]{{1,0},{0,1},{0,1},{1,0}};

        //迭代训练5000次
        for(int n=0;n<5000;n++)
            for(int i=0;i<data.length;i++)
                bp.train(data[i], target[i]);

        //根据训练结果来检验样本数据
        for(int j=0;j<data.length;j++){
            double[] result = bp.computeOut(data[j]);
            System.out.println(Arrays.toString(data[j])+":"+Arrays.toString(result));
        }

        //根据训练结果来预测一条新数据的分类
        double[] x = new double[]{3,1};
        double[] result = bp.computeOut(x);
        System.out.println(Arrays.toString(x)+":"+Arrays.toString(result));
    }
}



【转载】原文链接:http://geek.csdn.net/news/detail/56086

本文标签
 {{tag}}
点了个评