背景
我们直接跑到最底层,看看kafka的网络层处理是怎么处理的。因为Java的NIO还是偏底层,不能直接用来做应用开发,所以一般都使用像netty的框架或者按照自己的需要封装一些nio,让上层业务不用关心网络处理的细节,只需要创建服务监听端口、接受请求、处理请求、写返回就可以了。我在看netty、thrift等涉及到网络的Java框架时比较喜欢去看他们的nio是怎么封装的,这里也是能够体现作者水平的地方。java nio的基本元素为Selector、Channel、ByteBuffer。
我们从server和client两端分别分析。
kafka server端在org.apache.kafka.common.network中进行了封装。
就像package.html里面写的。
> The network server for kafka. No application specific code here, just general network server stuff. The classes Receive and Send encapsulate the incoming and outgoing transmission of bytes. A Handler is a mapping between a Receive and a Send, and represents the users hook to add logic for mapping requests to actual processing code. Any uncaught exceptions in the reading or writing of the transmissions will result in the server logging an error and closing the offending socket. As a result it is the duty of the Handler implementation to catch and serialize any application-level errors that should be sent to the client. This slightly lower-level interface that models sending and receiving rather than requests and responses is necessary in order to allow the send or receive to be overridden with a non-user-space writing of bytes using FileChannel.transferTo.
启动过程
网络层的启动在SocketServer.kafka中, 属于KafkaServer启动过程中的一部分
首先看一下server.properties中的网络相关配置
- listener就是本地的hostname和端口号, 没有的话会使用InetAddress和默认值(9092)
- num.network.threads 类比netty中的worker threads num,是负责处理请求的线程的数量,nio的reactor模式一般是前面有一个Acceptor负责连接的建立,建立后Reactor将各种读写事件分发给各个Handler处理,这个num是分发处理读写事件的io的线程数。
- num.io.threads 就是配置的Handler的数量,每个Handler一般都是一个线程(也叫IOThread)来处理。
- queued.max.requests 在Handler处理完成前能够排队的request的数量,相当于应用层的request buffer
- socket.send.buffer.bytes socket options里的sendbuffer
- socket.receive.buffer.bytes receive buffer
- socket.request.max.bytes 请求的最大的byte大小,因为接受请求时需要申请空间来存储请求,如果太大会导致oom,这是一个保护措施。
# The number of threads that the server uses for receiving requests from the network and sending responses to the network num.network.threads=3 # The number of threads that the server uses for processing requests, which may include disk I/O num.io.threads=8 # The number of queued request allowed before blocking the network threads #queued.max.requests # The send buffer (SO_SNDBUF) used by the socket server socket.send.buffer.bytes=102400 # The receive buffer (SO_RCVBUF) used by the socket server socket.receive.buffer.bytes=102400 # The maximum size of a request that the socket server will accept (protection against OOM) socket.request.max.bytes=104857600
SocketServer
这个类上的注释阐述了kafka server的io线程模型
这个类上的注释阐述了kafka server的io线程模型 /** * An NIO socket server. The threading model is * 1 Acceptor thread that handles new connections * Acceptor has N Processor threads that each have their own selector and read requests from sockets * M Handler threads that handle requests and produce responses back to the processor threads for writing. */
一共三种线程。一个Acceptor线程负责处理新连接请求,会有N个Processor线程,每个都有自己的Selector,负责从socket中读取请求和将返回结果写回。然后会有M个Handler线程,负责处理请求,并且将结果返回给Processor。
将Acceptor和Processor线程分开的目的是为了避免读写频繁影响新连接的接收。
SocketServer初始化
SockerServer创建的时候通过server.properties和默认的配置中获取配置,如numNetworkThread(num.network.threads,也就是线程模型中的N)、
创建processor数组、acceptorMap(因为可能会在多个Endpoint接收请求)、memoryPool(SimpleMemoryPool里主要做的事情是统计监控ByteBuffer的使用)、requestChanne等 。
private val endpoints = config.listeners.map(l => l.listenerName -> l).toMap private val numProcessorThreads = config.numNetworkThreads private val maxQueuedRequests = config.queuedMaxRequests private val totalProcessorThreads = numProcessorThreads * endpoints.size private val maxConnectionsPerIp = config.maxConnectionsPerIp private val maxConnectionsPerIpOverrides = config.maxConnectionsPerIpOverrides this.logIdent = "[Socket Server on Broker " + config.brokerId + "], " private val memoryPoolSensor = metrics.sensor("MemoryPoolUtilization") private val memoryPoolDepletedPercentMetricName = metrics.metricName("MemoryPoolAvgDepletedPercent", "socket-server-metrics") memoryPoolSensor.add(memoryPoolDepletedPercentMetricName, new Rate(TimeUnit.MILLISECONDS)) private val memoryPool = if (config.queuedMaxBytes > 0) new SimpleMemoryPool(config.queuedMaxBytes, config.socketRequestMaxBytes, false, memoryPoolSensor) else MemoryPool.NONE val requestChannel = new RequestChannel(totalProcessorThreads, maxQueuedRequests) private val processors = new Array[Processor](totalProcessorThreads) private[network] val acceptors = mutable.Map[EndPoint, Acceptor]() private var connectionQuotas: ConnectionQuotas = _
RequestChannel
因为Nio带来的异步特性,就是在一个连接上可以连续发送多个应用层的请求,每个请求得到是一个返回的Future。RequestChannel中将请求和返回结果放在各自的BlockingQueue中,也就是requestQueue和responseQueue,这里的request指客户端发来的请求。requestQueue的大小是queued.max.requests
定义的,默认500。而每个RequestChannel中有numProcessor大小个responseQueue(无界的LinkedBlockingQueue)。
这样Handler从requestQueue中取request处理得到response然后put到responseQueue中。Processor则把接收到的byte转换成requestput到requestQueue中,并从responseQueue中拉response写回给对应的socket。
startup
startup中创建Processor、Acceptor。创建connectionQuotas, 限制每个客户端ip的最大连接数。
val sendBufferSize = config.socketSendBufferBytes val recvBufferSize = config.socketReceiveBufferBytes val brokerId = config.brokerId var processorBeginIndex = 0 config.listeners.foreach { endpoint => val listenerName = endpoint.listenerName val securityProtocol = endpoint.securityProtocol val processorEndIndex = processorBeginIndex + numProcessorThreads for (i <- processorBeginIndex until processorEndIndex) processors(i) = newProcessor(i, connectionQuotas, listenerName, securityProtocol, memoryPool) val acceptor = new Acceptor(endpoint, sendBufferSize, recvBufferSize, brokerId, processors.slice(processorBeginIndex, processorEndIndex), connectionQuotas) acceptors.put(endpoint, acceptor) KafkaThread.nonDaemon(s"kafka-socket-acceptor-$listenerName-$securityProtocol-${endpoint.port}", acceptor).start() acceptor.awaitStartup() processorBeginIndex = processorEndIndex } }
Acceptor创建过程中启动了Processor线程。
/** * Thread that accepts and configures new connections. There is one of these per endpoint. */ private[kafka] class Acceptor(val endPoint: EndPoint, val sendBufferSize: Int, val recvBufferSize: Int, brokerId: Int, processors: Array[Processor], connectionQuotas: ConnectionQuotas) extends AbstractServerThread(connectionQuotas) with KafkaMetricsGroup { private val nioSelector = NSelector.open() val serverChannel = openServerSocket(endPoint.host, endPoint.port) this.synchronized { processors.foreach { processor => KafkaThread.nonDaemon(s"kafka-network-thread-$brokerId-${endPoint.listenerName}-${endPoint.securityProtocol}-${processor.id}", processor).start() } }
Acceptor和Processor启动后各自执行自己的loop。
Acceptor只负责接收新连接,并采用round-robin的方式交给各个Processor
/** * Accept loop that checks for new connection attempts */ def run() { serverChannel.register(nioSelector, SelectionKey.OP_ACCEPT) startupComplete() try { var currentProcessor = 0 while (isRunning) { try { val ready = nioSelector.select(500) if (ready > 0) { val keys = nioSelector.selectedKeys() val iter = keys.iterator() while (iter.hasNext && isRunning) { try { val key = iter.next iter.remove() if (key.isAcceptable) accept(key, processors(currentProcessor)) else throw new IllegalStateException("Unrecognized key state for acceptor thread.") // round robin to the next processor thread currentProcessor = (currentProcessor + 1) % processors.length } catch { case e: Throwable => error("Error while accepting connection", e) } } } } catch { // We catch all the throwables to prevent the acceptor thread from exiting on exceptions due // to a select operation on a specific channel or a bad request. We don't want // the broker to stop responding to requests from other clients in these scenarios. case e: ControlThrowable => throw e case e: Throwable => error("Error occurred", e) } } } finally { debug("Closing server socket and selector.") swallowError(serverChannel.close()) swallowError(nioSelector.close()) shutdownComplete() } }
/* * Accept a new connection */ def accept(key: SelectionKey, processor: Processor) { val serverSocketChannel = key.channel().asInstanceOf[ServerSocketChannel] val socketChannel = serverSocketChannel.accept() try { connectionQuotas.inc(socketChannel.socket().getInetAddress) socketChannel.configureBlocking(false) socketChannel.socket().setTcpNoDelay(true) socketChannel.socket().setKeepAlive(true) if (sendBufferSize != Selectable.USE_DEFAULT_BUFFER_SIZE) socketChannel.socket().setSendBufferSize(sendBufferSize) debug("Accepted connection from %s on %s and assigned it to processor %d, sendBufferSize [actual|requested]: [%d|%d] recvBufferSize [actual|requested]: [%d|%d]" .format(socketChannel.socket.getRemoteSocketAddress, socketChannel.socket.getLocalSocketAddress, processor.id, socketChannel.socket.getSendBufferSize, sendBufferSize, socketChannel.socket.getReceiveBufferSize, recvBufferSize)) processor.accept(socketChannel) } catch { case e: TooManyConnectionsException => info("Rejected connection from %s, address already has the configured maximum of %d connections.".format(e.ip, e.count)) close(socketChannel) } }
Processor的循环。
- 设置新连接
- 如果有Response尝试写回
- 带timeout的poll一次
- 接收Request
- 处理已经发送成功的Response
- 处理已经断开的连接
override def run() { startupComplete() while (isRunning) { try { // setup any new connections that have been queued up configureNewConnections() // register any new responses for writing processNewResponses() poll() processCompletedReceives() processCompletedSends() processDisconnected() } catch { // We catch all the throwables here to prevent the processor thread from exiting. We do this because // letting a processor exit might cause a bigger impact on the broker. Usually the exceptions thrown would // be either associated with a specific socket channel or a bad request. We just ignore the bad socket channel // or request. This behavior might need to be reviewed if we see an exception that need the entire broker to stop. case e: ControlThrowable => throw e case e: Throwable => error("Processor got uncaught exception.", e) } } debug("Closing selector - processor " + id) swallowError(closeAll()) shutdownComplete() }
处理新连接 configureNewConnections
Acceptor传过来的新socket放在了一个ConcorrentLinkedQueue中,
congiureNewConnections()负责获取ip端口号等信息然后注册到Processor自己的selector上。这个selector是Kafka封装了一层的KSelector
/** * Register any new connections that have been queued up */ private def configureNewConnections() { while (!newConnections.isEmpty) { val channel = newConnections.poll() try { debug(s"Processor $id listening to new connection from ${channel.socket.getRemoteSocketAddress}") val localHost = channel.socket().getLocalAddress.getHostAddress val localPort = channel.socket().getLocalPort val remoteHost = channel.socket().getInetAddress.getHostAddress val remotePort = channel.socket().getPort val connectionId = ConnectionId(localHost, localPort, remoteHost, remotePort).toString selector.register(connectionId, channel) } catch { // We explicitly catch all non fatal exceptions and close the socket to avoid a socket leak. The other // throwables will be caught in processor and logged as uncaught exceptions. case NonFatal(e) => val remoteAddress = channel.getRemoteAddress // need to close the channel here to avoid a socket leak. close(channel) error(s"Processor $id closed connection from $remoteAddress", e) } } }
processNewResponses
从requestChannel中poll待写回的Response,这里是将Channel的send变量设置为Response.responseSend等待Selector处理
private def processNewResponses() { var curr = requestChannel.receiveResponse(id) while (curr != null) { try { curr.responseAction match { case RequestChannel.NoOpAction => // There is no response to send to the client, we need to read more pipelined requests // that are sitting in the server's socket buffer updateRequestMetrics(curr.request) trace("Socket server received empty response to send, registering for read: " + curr) val channelId = curr.request.connectionId if (selector.channel(channelId) != null || selector.closingChannel(channelId) != null) selector.unmute(channelId) case RequestChannel.SendAction => val responseSend = curr.responseSend.getOrElse( throw new IllegalStateException(s"responseSend must be defined for SendAction, response: $curr")) sendResponse(curr, responseSend) case RequestChannel.CloseConnectionAction => updateRequestMetrics(curr.request) trace("Closing socket connection actively according to the response code.") close(selector, curr.request.connectionId) } } finally { curr = requestChannel.receiveResponse(id) } } }
Selector.send
/** * Queue the given request for sending in the subsequent {@link #poll(long)} calls * @param send The request to send */ public void send(Send send) { String connectionId = send.destination(); if (closingChannels.containsKey(connectionId)) this.failedSends.add(connectionId); else { KafkaChannel channel = channelOrFail(connectionId, false); try { channel.setSend(send); } catch (CancelledKeyException e) { this.failedSends.add(connectionId); close(channel, false); } } }
processCompletedReceives
Selector在接收到请求后,将数据放到一个List中,Processor取出后put到requestChannel的requestQueue中
private def processCompletedReceives() { selector.completedReceives.asScala.foreach { receive => try { val openChannel = selector.channel(receive.source) // Only methods that are safe to call on a disconnected channel should be invoked on 'openOrClosingChannel'. val openOrClosingChannel = if (openChannel != null) openChannel else selector.closingChannel(receive.source) val session = RequestChannel.Session(new KafkaPrincipal(KafkaPrincipal.USER_TYPE, openOrClosingChannel.principal.getName), openOrClosingChannel.socketAddress) val req = new RequestChannel.Request(processor = id, connectionId = receive.source, session = session, startTimeNanos = time.nanoseconds, listenerName = listenerName, securityProtocol = securityProtocol, memoryPool, receive.payload) requestChannel.sendRequest(req) selector.mute(receive.source) } catch { case e @ (_: InvalidRequestException | _: SchemaException) => // note that even though we got an exception, we can assume that receive.source is valid. Issues with constructing a valid receive object were handled earlier error(s"Closing socket for ${receive.source} because of error", e) close(selector, receive.source) } } }
processCompletedSends
在Selector发送完成Resposne后,从inflightResponse中remove掉这个connnection -> resposne的键值对,当前inflightResposne只用于验证response的正确性,就是一个Channel写的数据必须在发送后先记录在inflightResponse中
private def processCompletedSends() { selector.completedSends.asScala.foreach { send => val resp = inflightResponses.remove(send.destination).getOrElse { throw new IllegalStateException(s"Send for ${send.destination} completed, but not in `inflightResponses`") } updateRequestMetrics(resp.request) selector.unmute(send.destination) } }
processDisconnected
写失败的连接和由于各种原因close的连接,需要清理已经占用的内存空间,例如inflightResponses。
private def processDisconnected() { selector.disconnected.keySet.asScala.foreach { connectionId => val remoteHost = ConnectionId.fromString(connectionId).getOrElse { throw new IllegalStateException(s"connectionId has unexpected format: $connectionId") }.remoteHost inflightResponses.remove(connectionId).foreach(response => updateRequestMetrics(response.request)) // the channel has been closed by the selector but the quotas still need to be updated connectionQuotas.dec(InetAddress.getByName(remoteHost)) } }
至此网络部分基本分析完成,后面有涉及到的要注意的地方会单独介绍。
startup完成后,KafkaServer继续完成其他的startup
Kafka Client端网络代码
clients包里分成主要Send、Receive、KafkaChannel和Selector四部分
Selectable是其中的网络操作的接口, Selector是具体的实现, 包括了发送请求、接收返回、建立连接、断开连接等操作。
/** * An interface for asynchronous, multi-channel network I/O */ public interface Selectable { /** * See {@link #connect(String, InetSocketAddress, int, int) connect()} */ public static final int USE_DEFAULT_BUFFER_SIZE = -1; /** * Begin establishing a socket connection to the given address identified by the given address * @param id The id for this connection * @param address The address to connect to * @param sendBufferSize The send buffer for the socket * @param receiveBufferSize The receive buffer for the socket * @throws IOException If we cannot begin connecting */ public void connect(String id, InetSocketAddress address, int sendBufferSize, int receiveBufferSize) throws IOException; /** * Wakeup this selector if it is blocked on I/O */ public void wakeup(); /** * Close this selector */ public void close(); /** * Close the connection identified by the given id */ public void close(String id); /** * Queue the given request for sending in the subsequent {@link #poll(long) poll()} calls * @param send The request to send */ public void send(Send send); /** * Do I/O. Reads, writes, connection establishment, etc. * @param timeout The amount of time to block if there is nothing to do * @throws IOException */ public void poll(long timeout) throws IOException; /** * The list of sends that completed on the last {@link #poll(long) poll()} call. */ public List<Send> completedSends(); /** * The list of receives that completed on the last {@link #poll(long) poll()} call. */ public List<NetworkReceive> completedReceives(); /** * The connections that finished disconnecting on the last {@link #poll(long) poll()} * call. Channel state indicates the local channel state at the time of disconnection. */ public Map<String, ChannelState> disconnected(); /** * The list of connections that completed their connection on the last {@link #poll(long) poll()} * call. */ public List<String> connected(); ... }
Send作为要发送数据的接口, 子类实现complete()方法用于判断是否已经发送完成,实现writeTo(GatheringByteChannel channel)方法来实现写入到Channel中,